

17TH EAST ASIAN ACTUARIAL CONFERENCE

15-18 October 2013 Resorts World Sentosa, Singapore

Agile Capital Modelling

Contents

- Introduction
- Capital modelling
- Capital modelling snakes and ladders
- Software development
- Agile software development
- Agile capital modelling

Capital Modelling Objectives

Some key objectives of capital models

- ✓ Calculate regulatory (e.g. SII) capital
- ✓ Calculate economic capital
- ✓ Calculate capital benefit of new portfolios and products
- √ Evaluate reinsurance options
- √ Testing business plan
- √ Capital allocation
- √ Asset Liability management

Parameterisation

•How the data constrains us

Regulatory Capital Regimes

- Solvency II
- Enterprise Risk Management (S&P, AM Best)
- Singapore RBC
- Malaysia ICAAP
- Indonesia FCR
- Japan Solvency
- Australia APRA
- And others

Regulatory Capital - 3 Pillars Pillar 1 Pillar 2 Pillar 3 **Quantitative Requirements Supervisory Review Disclosure Requirements Capital Requirements** Systems of governance Solvency and Financial Condition Report (SFCR) Own Risk & Solvency Solvency Capital Requirement (SCR) Assessment (ORSA) Greater transparency to investors Minimum Capital Supervisory review process Requirement (MCR) Report to Supervisors (RSR) Assessment of Calibrated to 99.5% VaR of quantitative and Quarterly and annual deterioration in Balance Sheet qualitative requirements reporting requirements Net Asset Value over 1 year. Fair value balance sheet

Massive Scope

- Cause: Organizations often attempt to build entire economic model and satisfy a number of different stakeholders
- Issues: Building of the model takes too long, Organization receives little benefit, modeling project loses momentum or dies
- **Recommendation:** Start with smaller specific modules and gradually increase the scope and functionality of the model; Consider development of a model plan; Iterate development; Use simple placeholders for other parts of the model; Provide reports to Stakeholders

Proprietary & Confidential

- Cause: Organizations try to replicate the level of detail in their deterministic financial projections
- Issues: Refining of the model to get this level of detail has little impact on modeling results and becomes a time consuming and laborious exercise
- Recommendation: Employ the strengths of stochastic modeling and focus on key financial items and ratios/metrics; Alternatively consider more granular models to perform specific functions (e.g. prospective UW, catastrophe risk management)

Proprietary & Confidential

9

Snakes and ladders

Too Many Variables

- Cause: Organizations seek to build a comprehensive and accurate model and ensure no risks are overlooked
- Issues: Inability to decipher output, organizations gain a false sense of precision the more variables, the greater the degree of difficulty in getting the
 interrelationships (dependencies, correlations) correct
- Recommendation: Focus on key variables, use "What if" features of ReMetrica to determine the risk drivers and isolate their impact and/or examine specific risks and scenarios

Proprietary & Confidential

10

- Cause: Organizations may fail to realize that to achieve their modeling objectives they need to provide a significant amount of data
- Issues: Organizations don't fully appreciate the type of data required; Some organizations expect the model to provide parameters, when in actuality the actuarial work to develop parameters is done outside the model
- **Recommendation:** Ensure in-house modelers understand how parameters for the model are established; Start procuring the required data and developing (or acquiring) parameters as early in the process as possible

Proprietary & Confidential

11

Snakes and ladders

Lack of Dedicated Resources

- Cause: Organizations place modeling responsibilities on already strained resources, frequently it is an add-on to someone's day job
- Issues: Initial phases of customizing and parameterizing the model is time consuming; resources may also be needed to independently validate the model
- **Recommendation:** Organizations need to provide temporary relief of some responsibilities for modeling staff or add resources or adjust expectations; plan ahead on how the model will be tested and validated

• Elevated Expectations

- Cause: Organizations establish aggressive timelines for building, testing and implementation; organizations may increase the scope of the model or tighten timeframes to meet organizational objectives (Board or rating agency meetings)
- Issues: Modeling may be delayed due to the absence of data and organizations may not allow sufficient time for testing and validation of the model
- Recommendation: Set realistic timeframes for building and testing of the model and don't change the scope appreciably without considering the impact to the timeline

Software Development

Software Development

- Issues with waterfall approach
 - Long time before see results
 - Result doesn't reflect actual needs of stakeholders
 - Problems early in process difficult to correct
 - Software releases are too late
 - Time 'wasted' on unnecessary features
 - Too late to make key improvements / changes

Software Development

- Agile Software development process
 - Don't try to analyse everything up front
 - Do many small iterations
 - Set milestones for individual tasks
 - Keep as simple as possible
 - Get feedback from stakeholders
- But discipline required:
 - Version control
 - Continuous testing
 - Unit tests, regression tests
 - Continuous documentation

Software should always be ready to deliver!

Agile Practices & Lessons Learned

- Actively manage the scope of the model
 - Start with specific applications/goals
 - Don't try to build a model that does everything on Day 1
 - Don't try to please all stakeholders
 - Be realistic with representations made to rating agencies
- Models are tools to aid decision-making, not supplant it
 - In most cases, model results are used to support an management decision
 - It can take several iterations of the model and events for management to start to find the models useful

Proprietary & Confidential

Agile Practices & Lessons Learned

- Focus on the key risks as opposed to trying to model all risks
 - Many organizations lack the data to model operational and strategic risks
 - Use scenario testing to help plan for other risks not in the core model and to develop plans for contingencies
 - Don't try to incorporate risks where there is insufficient data
- Stochastic models do not lend themselves to detailed accounting treatments
 - Tax treatments
 - Intercompany eliminations or intercompany transfers
 - Provision for reinsurance calculation
 - Amortization, depreciation, accruals, allowances, fees, etc.

Proprietary & Confidential

19

Agile Practices & Lessons Learned

- Educate stakeholders on how to view modelled results
 - Don't use the same view (ratios and metrics) that were used in deterministic approaches
- Models are driven by the assumptions, so the need to validate the model is critical
 - Most organizations need to spend more time validating and back-testing their models
 - Use sensitivity testing (altering one variable at a time) to understand what is driving results
- Too much complexity will erode the credibility of the model
 - There is a point where extensive complexity and granularity overshadows accuracy and introduces increased risk of model misspecification error

Proprietary & Confidential

20

How Long Does It Take To Build A DFA Model

- Variables
 - Scope of the model
 - Internal & external resources to support the modelling project
 - Availability & suitability of data
 - Speed of decision-making regarding modelling Issues
- Model Scope
 - Purpose, scope and level of detail (number and types of time intervals e.g. monthly, annually, number of years, number of lines of business, number of companies, inter-company reinsurance, types of assets, types of risks e.g. include credit risks, desired output, e.g. financial statements)
- What's Time Consuming with Respect to Model Building
 - Determining purpose and design
 - Gathering data and inputs
 - Designing outputs
 - Building/Customizing a Model
 - Assumptions/Parameterising (Usually the most time consuming part)
 - Testing and validation (ongoing)

Proprietary & Confidential

